
Collabora Productivity www.collaboraoffice.com

Collabora Productivity

Online: Unit Testing
Michael Meeks

<michael.meeks@collabora.com>

mmeeks / irc.freenode.net

@mmeeks +mejmeeks

“In his great mercy he has given us new birth into
a living hope through the resurrection of Jesus

Christ from the dead” - 1 Peter 1:3

https://www.collaboraoffice.com/

First - Terms & Architecture

Collabora Productivity www.collaboraoffice.com

Online: Unit Testing & Quality

Vital

● Allows us to create complexity & maintain it.

● Gives us confidence in our source releases

Hard

● Networking setup / latency etc. is tough.

● Code is split between processes – WSD, Forkit, Kit – with different permissions & capabilities

● Code is split between modules & abstracted behind LibreOfficeKit API

Harder: browsers

● Who wrote the front-end in Javascript ?

● Browsers are quirky & different …

● Visual / inspection of pixels is a horror …

But: easier → Linux Only !

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

What tests do we have ?
During Build – low dependency bits.

● TileCacheTests & WhiteBoxTests

● Queue & preview priorities, tile combining, invalocation / page size pieces

● Tokenizer, Regex matcher, Rectangle intersecter

New style

● Preforking, OAuth interactions, TileCache tweaks, Fuzzing plugin.

● Plus - the old-style tests (wrapped in a new-style test)

Old style

● Everything else:

● Kit crash & recovery, Failed document load, Bad requests

● load torture testing, save on disconnection(s), text selection

● Copy/paste, password protection, slideshow, calc row/column

● Graphic Selection, User Alerts, Repair-Document / Undo Conflicts …

In-Browser - bit-rotted

● loleaflet/spec – runLoadTest.sh & other leaflet tests ...

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Old vs. New comparison

Old Style New Style

Concurrency Test + WSD + Kit*
Multi-thread

WSD + Kit*,
Multi-thread

Debug-ability Multi-process Single Process

Logging Multiple log streams Console output

Performance Lots of sleeps Zero sleeps

Transparency Acts like a normal
client

Code injection &
hooks everywhere

Reliability Opaque failures if
WSD / test owns
ports 9984 &9985
Has to have SSL
enabled

No dedicated ports
required;
Theoretically
parallelizable;
Certain of code run

Framework CPPUNIT Custom

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Unit Testing tips.
● Ensure that SSL is enabled (for old-style)

● configure with –enable-debug – or some tests fail.

● Before running make check:

$ sudo pkill -9 -f lool # dung out existing wsd / kits.

● Worth checking disk-space too: we warn and fail early.

● forkit has capabilites (cf. Root)

● While these are dropped – you still can’t attach

$sudo gdb # is your friend

● sudo strace – but first patch:

- if (geteuid() == 0)

- throw std::runtime_error("Do not run as root ...”

● #define KIT_IN_PROCESS - Collapses whole architecture to one process.

● trace[@enable] and tools/Replay, tools/Stress ...

https://www.collaboraoffice.com/

How New tests work

Collabora Productivity www.collaboraoffice.com

The flow

● test/Makefile.am

unit_prefork_la_SOURCES = UnitPrefork.cpp

TESTS = unit-prefork.la ...

● Add your test to TESTS

$ make check

● Watch the test fail: this is good …

● test/run_unit.sh –test-name unit-prefork.la

● generated from run_unit.sh.in by configure / config.status

● runs tests & logs to stderr

● test/run_unit.sh --help

https://www.collaboraoffice.com/

Writing your test

Collabora Productivity www.collaboraoffice.com

Bare bones of a new unit-test:
● Magic entry point:

UnitBase *unit_create_wsd(void) // Called in WSD
{
 return new UnitFuzz();
}
UnitBase *unit_create_kit(void) // Called in Kit
{
 return new UnitKitFuzz();
}

● Sub-class common/Unit.hpp

● UnitWSD & UnitKit

● Sample hooks – easy to add more:

/// Main-loop reached, time for testing
virtual void invokeTest() {}
/// When admin notify message is sent
virtual void onAdminNotifyMessage(const std::string& /* message */)
…
exitTest(TestResult::OK | Failed | TimedOut); ...

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

Bare bones of a probe ...

● Add it to Unit.hpp – UnitBase / UnitWSD / UnitKit

● Filter pattern allows us to inject changes to the control flow:

/// Trap and filter alerting all users
virtual bool filterAlertAllusers(const std::string & /* msg */)
{
 return false;
}

● Invoke the filter and act on its output where you like:

void DocumentBroker::alertAllUsers(const std::string& msg)

{
 if (UnitWSD::get().filterAlertAllusers(msg))
 return;

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

WSD: What hooks do we have ?
I/O bits:

handleHttpRequest(const Poco::Net::HTTPRequest&req,

 std::shared_ptr<StreamSocket>&socket)

● Filter any incoming HTTP request

filterHandleRequest(TestRequest type (Prisoner or Client),

 SocketDisposition &disposition, WebSocketHandler &handler)

● Allow filtering of raw WebSocket protocol inputs

filterSessionInput(Session *, const char *buffer, length, std::unique_ptr< std::vector<char> >
&replace)

● Filter or mutate parsed data from the WebSocket

Misc / Warnings

● filterCheckDiskSpace, filterAlertAllUsers

● configure → allow clobbering any configuration items

● onChildConnected

TileCache → onTileCacheHit / Miss / Subscribe

https://www.collaboraoffice.com/

Collabora Productivity www.collaboraoffice.com

What other hooks do we have ?
Admin

● onAdminNotifyMessage / onAdminQueryMessage

● Filter / test incoming / outgoing Admin Console traffic.

Kit bits

● FilterKitMessage – allows hooking Kit specific messages via old
LOOLWebSocket

● launchedKit – hook just after we fork to initialize the child.

ForKit

● InvokeForKitTest – run only in the forkit process

● launchedKit(int pid) – when we’ve launched a kit

https://www.collaboraoffice.com/

Collabora Productivity Summary
● Unit testing is vital

● You should write tests

● There are several ways to do it

● Use the ‘new’ way if you can

● Add probes / instrumentation to the code as you go to test.

● More (reliable) automated tests are always appreciated

● Poke me – if you need help writing a test.

Oh, that my words were recorded, that they were written on a scroll, that they
were inscribed with an iron tool on lead, or engraved in rock for ever! I know
that my Redeemer lives, and that in the end he will stand upon the earth. And
though this body has been destroyed yet in my flesh I will see God, I myself
will see him, with my own eyes - I and not another. How my heart yearns
within me. - Job 19: 23-27

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

