
Svante.Schubert@gmail.com

Taming the ODF Dragon:
Complexity Reduction by improved
Tooling

ROME | 11 October 2017

2

Agenda

● Why?

● What?

● How?

Why?

4

Why? Leverage ODF standard!

● ODF is..

– Blueprint for all ODF applications

– Telling what are valid ODF documents

– An OASIS and ISO standard (government argument)

– created against vendor lock-in (interoperability by format)

What?

6

Improve ODF for developer!

● Ease ODF application development

– Safe time by avoid repeated work!

– Reducing complexity!

● Share as much as possible among ODF app developers..

– Feature tests and test documents at standard level (similar JPEG2000 ISO standard)

– Make specification machine readable..

– Generate (as much as possible)..

10

We shall aim for..

● Conformance comparison of ODF Applications (like Toasters)

● Automated ODF conformance tests (like ACID3 for HTML/CSS)

– only work as HTML has a browser Run-Time-Model (DOM)

● No ODF XML Run-Time-Model, but common Semantic Model

● Need for ODF Feature description

– There is more than a monolithic ODF block

● Need for ODF Feature change description

– User already expect to change ODF documents

– Do no longer 'send the repository', send an ODF DIFF

● Some feature example: Page layout… (see PageLayout.odt)

11

An ODF feature example..

● Page Layout test document (PageLayout.odt)

– Two pages (one portrait, one landscape layout)

– Three paragraphs (two on first page, third on second)

– Different header/footer on each page

14

The Semantic Model vs. XML

● ODF XML Logic (XML Model)

– Paragraph → Style → Master Page → Page Layout → Text/Size

● User Logic (Semantic Model)

– Align paragraph with page layout (header & footer and size)

– Decouple XML from user logic

– Define feature machine readable in spec & grammar

15

 Specify Semantic Model!

● Define semantic model in ODF spec & grammar

–How does the ODF XML change, when we add / modify / delete the feature

–Allow to send DIFF instead of documents

–Make Libreoffice Online, Office365, Google Docs and GIT interoperable!

● Enable to generate the model from the ODF spec & grammar

–How the run-time-model is changed when adding / modifying / deleting the feature

– Import & export of ODF XML into application are dependent like inverse functions and should be able to be generated as well

16

 Specify Semantic Model!

● Problem:

– ODF grammar is more than 18.000 lines text file

– Hard to read / analyze

How?

18

Tricks to analyse ODF

● Original Idea: Chaos Computer Congress on Source Code Analysis

– Instead of using 'grep' on source code text files

–Mapping source code semantic to graph database (TinkerPop 3)

–Analyze the graph with stored procedure (Gremlin script)

http://www.mlsec.org/joern/
http://tinkerpop.apache.org/docs/current/reference/

19

Tricks to analyse ODF

● Original Idea: Chaos Computer Congress on Source Code Analysis

– Instead of using 'grep' on source code text files

– Mapping source code semantic to graph database (TinkerPop 3)

– Analyze the graph with stored procedure (Gremlin script)

● Copied Idea: Transformed to our ODF domain:

– Instead of looking into ODF grammar text file (>18k lines)

– Map the ODF grammar into a graph database (Tinkerpop 3)

– Analyze the ODF grammar graph with reproducible queries (using Gremlin script within GraphDB)

http://www.mlsec.org/joern/
http://tinkerpop.apache.org/docs/current/reference/
http://docs.oasis-open.org/office/v1.2/os/OpenDocument-v1.2-os-schema.rng
http://tinkerpop.apache.org/docs/current/reference/

20

How? - Mapping into GraphDB

●Map the ODF grammar into a graph database (Tinkerpop 3)

–ODF grammar (RelaxNG XML) file is the source

–Instead of parsing and resolving it myself, reuse OpenSource MultiSchemaValidator and parse its memory dump :)

–Written a tool by using ANTLR 4.0 (parser generator) mapping the MSV input to a Graph XML file (to load into any GraphDB)
see JIRA #458 of Apache ODF Toolkit (incubating)

https://github.com/kohsuke/msv
https://issues.apache.org/jira/browse/ODFTOOLKIT-458

21

Reproducible Analysis

● Analyze the ODF grammar graph

● Having reproducible queries

– using Gremlin script within GraphDB

– What is the difference between a heading (text:h) and paragraph (text:p)?

– Is it possible that paragraphs are being nested?

– What is the minimal text document?

– …

22

@Developer: To Do List

● Identify all ODF patterns (semantic model, feature change API)

● Make all ODF information machine readable in the specification

– e.g. annotate ODF elements in grammar, which start a logical user object

● Generate as much as possible from ODF spec

– Move feature tests and test documents to ODF standard

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 4.0 License
(unless otherwise specified). "LibreOffice" and "The Document Foundation" are registered trademarks. Their respective
logos and icons are subject to international copyright laws. The use of these therefore is subject to the trademark policy.

Thank you!

https://creativecommons.org/licenses/by-sa/4.0/%22%20%5Ct%20%22_parent
https://wiki.documentfoundation.org/TDF/Policies/Trademark_Policy%22%20%5Ct%20%22_parent

	Slide 1
	Agenda
	Slide 3
	slide with border
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

