
Native GTK UI

Native in 6.0

● File Dialog
– Native for years

● Tooltips
– Tell GTK the area the tooltip is for and GTK positions it

● Popovers
– Formula typeahead indicator in calc

– Page indicator in impress slide pane

● Menubar and menus
– Context menus too

Native in 6.1

● Message Dialogs

● Some simple dialogs

Native in 6.1

● Sample warning dialog with extra widgetry

Native towards 6.2

● 190+ GenericDialogControllers

● 80+ Tab Pages
– Tab pages get reused in multiple dialogs, so...

– Detect whether in a native SfxTabDialogController
or a vcl-based SfxTabDialog and react accordingly

● 26+ SfxTabDialogControllers
– Including the big ones, format character, format

paragraph and format character

– and the format area “six tab pages in a tab page”

Walk Through of Native GTK
components

Walkthrough

● Tooltips, Popovers

● Native Message Dialog example

● Animated effects, e.g. radio/check buttons

● Color Menu Button/Line Style Menu Button

● Overlay Scrollbar

● Interactive Custom Widget

● Tabbed Dialog
– A mega Tabbed Dialog with area tab, e.g Format Page

● GtkComboBox[Text] with images

● Password Caps Lock Indicator

UI Descriptions

Original UI Descriptions

● src file format

● Fixed positions
– Measured in average character cell widths

– Arbitrary language-based guesstimate
multiplier

● Manually sized to longest translation strings

● No GUI Editor

Widget Builder UI
Descriptions

● Gtk Builder file format

● Described in terms of Gtk Widgets
– Mapped to VCL Widgets

● New VCL GtkGrid/GtkBox equivalents

● Dynamically sized and positioned

● Glade GUI Editor

● Resulted in 977 .ui files

Translations

Old Translation Format

● src file input format

● Custom .res binary output format

● Each translation as a unique id number

● #define in .hrc included by .cxx and .src

● Custom tooling to convert .src <-> .po

Current Gettext Format

● Direct from .ui and c++ source files

● Standard .mo binary output format

● Each translation now a “Context”, “English
source” pair #defined in .hrc

● Standard tooling to extract to .po and
output .mo
– Write .mo files with gettext tooling

– Read .mo files with boost::gettext

● 22162 translations

Native GTK LibreOffice UI

Native UI Loading

● Load the .ui files natively with GTK own
GtkBuilder API

● Let GTK load the .mo files by itself for
translations

● Bind (weld) to those native GTK widgets from
LibreOffice

● Current LibreOffice .ui loading code is fallback
implementation for the non-GTK case

Native UI Loading

● A half-way house API, nudge a few places to
behave more like the other.

● A GTK implementation in terms of the GTK API

● Fallback VCL implementation in terms of
existing VCL API

● New “Custom” widget with Paint callback
providing a VirtualDevice, etc.
– In vcl case blit to VCL Windows OutputDevice

– In GTK case blit VirtualDevices underlying cairo
surface during draw signal

File Format details #1

● GtkRadioButton groups have to all link to the active
entry, which itself has to link to nothing
– We typically linked them around in a circle, a grouped to b,

b to c, c to d and d to a.

● Have to have a different GtkAdjustment for each
GtkSpinButton
– We often reused the same GtkAdjustment to describe

starting conditions of multiple widgets

● GtkSpinButton “output” signal to format value, i.e.
support LibreOffice some what unusual “10.00 cm”,
“20%” formatting
– Remove “:UNIT” naming hack, move unit to code as bind

time argument

File Format details #2

● Vertical action areas where we have vertical
buttons on the right of a dialog have to made
horizontal instead

● GtkTreeView have to have an associated
GtkTreeViewColumn with a
GtkCellRendererText set for column 0

● GtkComboBox using liststores can typically be
converted to GtkComboBoxText

● All GtkTreeViews (and GtkComboBoxes) have
to have the same model/renderer layouts

Custom Widgets

● Three main types

● Simple wrappers
– e.g. Numbering List box, just populates a

ComboBox with available numering types

● Preview widgets
– e.g. format character preview

● Interactive widgets
– e.g. color selector ValueSet, anchoring selector

RectCTL

Custom Widgets

● Custom Widgets typically inherited from vcl::Window or Control

● Now inherit from CustomWidgetController, which provides mostly
the same API, GetFocus, LoseFocus, MouseButtonDown, etc

● Doesn’t inherit from vcl::Window, so finds some missing places of
the double-buffering work

● The .ui element is a GtkDrawingArea as its canvas
– VCL_BUILDER_FACTORY dlsym hack gets removed

– Custom widget description in glade catalog gets removed

– Borders now in .ui via a surrounding GtkScrolledWindow

● Connect a CustomWidgetController to its canvas via a
CustomWeld, which takes as arguments the
CustomWidgetController and the name of the GtkDrawingArea

Custom Widget Accessibility

● Like as when inheriting from vcl::Window, a
custom widget can implement
CreateAccessible() which returns a uno object
implenting the a11y apis.

● The LibreOffice GTK<->libreoffice-ally bridge,
previously used for the “mega-widget” is
reused to connect to the underlying GTK
individual canvas widget’s a11y.

● So, the native GTK widgets use their own
native a11y, the custom widgets hook up to
our preexisting a11y

Potential Gotchas
● Parents of dialogs sometimes described as

awt::XWindow
– Currently just enough of XWindow implemented to

smuggle a weld::Window through as an argument to make
that work

● Minimum targeted version of GTK is GTK 3.18, so can’t
use any properties not available there or it crashes
– Glade typically warns about these, but not always

● Pretty popovers can only escape dialogs under
wayland, so boring alternative used under X

● No Typeahead in Entry-less ComboBoxes

● GtkNotebook scrolling tabs, not double-decker rows

End, Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

